Kinetic energy

Work-energy theorem

Procedure: decomposition

one case

Requirement: The speed in one direction is unchanged Explanation: reference frame conversion

Proof for one case: \( \frac{1}{2} m v_1^2 - \frac{1}{2} m v_0^2 = \frac{1}{2} m (\sqrt{v_0^2 + v_y^2})^2 - \frac{1}{2} m v_0^2 = \frac{1}{2} m v_y^2 \)

general

动能定理的“正交分解” - 夏季云 - 2009年7月

\( F_x = m \frac{v_x^2 - v_{x0}^2}{2x} \)

\( W_x = F_x x = \frac{1}{2}m v_x^2 - \frac{1}{2}m v_{x0}^2\)